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L This report i s  concerned with the radiation of aperture antennas 

into lossy media. Two antennas a r e  considered: the infinite slot in 

a ground plane and the rectangular aperture in a ground plane. The 

object of the study is to determine for each antenna the admittance 

as a function of the electrical constants of the lossy medium. For 

each antenna configuration, two problems a r e  treated.  F i r s t ,  the 

antenna i s  assumed to radiate into a lossy half-space, and second, 

the antenna is assumed to radiate through a lossy slab into a f ree-  

space region. Fo r  each case the aperture  admittance is calculated 

as a function of the complex propagation constant of the lossy medium 

and the aperture dimensions. - 
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* CHAPTER I 

INTRODUCTION 

This study is concerned with the radiation of aper ture  an- 

tennas into lossy media. Two types of antennas a r e  considered: 

the infinite slot  in a ground plane and the rectangular aper ture  in  

a ground plane. The object of the study is to  determine for  each 

the lossy medium. 

This work is motivated in  par t  by a need to measure  the prop- 

e r t ies  of a plasma by means of the.admittance of an antenna in  the 

plasma. The rectangular aperture in particular is a practical  form 

of antenna for such experiments. 

The properties of antennas in  lossy media have been studied by 

many authors. .  The earliest  work was done shortly before and during 

World W a r  I, when submarine communication problems stimulated 

interest  in  submerged antennas. Geophysical prospecting also pro- 

vided motivation for  some of the work. By far the greatest  portion 

1 
I 
I 
I 

of the work on lossy media, however, was done af ter  World W a r  11. 
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Extensive bibliographies on this subject have been given by Hansen, ' 
Moore, and Tai. 3 

The most notable contribution during the early period was of 

course Sommerfeld's treatment of the dipole over a lossy half-space. 

6 This work is given in Sommerfeld, Stratton, and Bremmer .  

Other work during the ear ly  period indudes that of Carson, '  Fos te r ,  

R C. Hansen, "Radiation and Reception with Buried and Sub- 
merged Antennas," Trans.  of the IEEE, Vole AP-11, No. 3, p. 207,  
May, 1963. 

2R.K. Moore, "Effects of a Surrounding Conducting Medium on 
Antenna Analysis, 
May, 1963. 

Trans.  of the IEEE, Vol. AP-11, qo. 3 ,  p. 216, 

'C.T. Tai,  "Antennas in  Lossy Media, Proc.  of the 1963 
URSI General As s embly . 

4A. Sommerfeld, Partial Differential Equations .in Physics, 
Academic Press ,  Inc., New York, p. 236, 1949. 

J .A .  Stratton, Electromagnetic Theory, McGraw-Hill Book -- 
Go., New York, p. 573, 1941. 

6H.  Bremmer,  "Electric Fields and Waves, I '  in  Handbuch der  
physik, S. Flugge, Ed.,  Springer Verlag, Berlin,  Germany, Vole 16, 
Chapt. 4, p.  519, 1958. 

' J . R .  Carson, "Wave Propagation in  Overhead Wires with 
Ground Return," Bell Sys. Tech. J o u r o ,  Vol. 5, pp. 539-554, 
October, 1926 

'R.M. Fos te r ,  "Mutual Impedance of Grounded Wires Lying 
on the Surface of the Earth,  I '  Bell Sys. Tech. Jour . ,  Vol. 10, 
pp. 408-419, July, 1931. 
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Riordan and Sunde, 

ear th  on overhead wires  and wires lying on the ground. 

Bouthillon, l 1  Taylor, 

submarine communication problem. 

who were concerned with the effect of a lossy 

Batcher, l o  

2 l 3  Willoughby and Lowell14 considered the 

The studies on lossy media appearing af ter  World W a r  II are 

much more  numerous. 

admittance properties of antennas, we will discuss only those papers 

dealing with the admittance e C . T. Tai in  1947 considered an  infi- 

Since our  pr imary  interest  here  is in the 

n i t e ~ i i ~ ~ l  dipole iii aii iidiiiiie I S S S ~  medium and found fiat fie input 

9J. Riordan and E.D. Sunde, "Mutual Impedance of Grounded 
Wires for  Horizontally Stratified Two-Layer Earth, 
Jour . ,  Vol. 12, pp. 162-177, Apri l  1933. 

Bell Sys. Tech. 

"R.R. Batcher, "Loop Antennas for  Submarines, Wireless Age, 
Vol. 7. p. 28, 1920. 

L. Bouthillon, "Contribution a l'etude des Radio communica- 
tions Sousmarines, Rev. gen. 'elect., Vol. 7. pp. 696-700, May, 
1920. 

l 2  Taylor, A.H., "Short Wave Reception and Transmission on 
Ground Wires (Subterranean and Submarine), I '  Proc.  IRE, Vol. 7, 
pp. 337-362, August, 1919. 

"A.H. Taylor, "Long Wave Reception and the Elimination of 
Proc.  IRE, Strays on Ground W i r e s  (Subterranean and Submarine), 

Vol. 7, pp. 559-583, December, 1919. 

J.A. Willoughby and P. D. Lowell, "Development of Loop 
Aerials  for  Submarine Radio Communication, I '  Phys. Rev., Vol. 14, 
pp. 193-194, August, 1919. 
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power is Tai a lso found the input imped.snce of a bi- 

conical antenna in an insulating cavity.' 

impedance of a long wire  over the earth,17 and the mutual impedance 

W a i t  has discussed the 

of loops lying on the earth." He has a l so  determined the radiation 

resistance of a horizontal loop over the earth" and the radiation 

resistance of dipoles in the interface between two dielectrics e u, King 

and Harrison21 have discussed the impedance of a half-wave cylindri- 

ca l  antenna in a dissipative medium. An extensive treatment of the 

C. T. Tai,  "Radiation of a Hertzian Dipole Immersed in a 
Conducting Medium, Cruft Lab * ,  Harvard University, Cambridge, 
Mass. ,  Rep, No. 21, October, 1947. 

l 6  C. T. Tai, "On Radiation and Radiation Systems in the P r e s -  
ence of a Dissipative Medium, 
Cambridge, Mass., Rept. No. 7 7 ,  October, 1949* 

Cruft Lab., Harvard University, 

l7 J.R. Wai t ,  "On the Impedance of a Long Wire Suspended 
over the Ground, ' I  Proc. IRE, Vol. 49, p. 1576, October, 1961. 

l 8  J. R. W a i t ,  "Mutual Coupling of Loops Lying on the Ground, 
Geophys., Vol. 19, pp. 290-296, April,  1954. 

19J.R, W a i t ,  Radiation Resistance of a Small Circular Loop 
in  the Presence of a Conducting Ground, 
pp. 646-649, May, 1953. 

J. Appl. Phys Vol. 24, 

20J.R. Wait, "Radiation Resistance of Dipoles i n  an  Interface 
between Two Dielectrics, ' I  Can. J. Phys., Vol. 34, pp. 24-26, 
January, 1956. 

21 R .  W P. King and C W .  Harrison, "Half-Wave Cylindrical 
Antenna in a Dissipative Medium: Current and Impedance, J. Res. 
NBS, Vol. 64D, pp. 365-380, July-August, 1960. . 
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cylindrical antenna in a los sy  medium has a l so  been given by 

King.22 Kraichman has discussed the impedance of a circular  loop 

in  an  infinite lossy medium. 23 

Some recent work has been done by Guy and Hasserjian" who 

have discussed the impedance of dipoles fo r  an  a r r a y  immersed  in  

a lossy half-space. Ghose2' has examined the mutual coupling be- 

tween subsurface antenna a r r ay  elements e 

investigated the resistances of horizontal e lectr ic  and ver t ical  mag- 

Bhattacharyyaz6 has 

netic dipoies over a iossy earth. Chen and King" have t reated a 

2z R.W. P. King, "Dipoles i n  Dissipative Media, Proc.  Symp. 
on Electromagnetic Waves, Math: Research Center, Univ. of W i s -  
consin, Madison, W i s . ,  April, 1961, Univ. of Wisconsin P r e s s ,  
pp. 199-241, 1962. 

23M.B. Kraichman, "Impedance of a Circular Loop in  a n  
Infinite Conducting Medium, I '  J. Res e NBS, Vol. 66D, pp. 499-503, 
July-August, 1962. 

"A.W. Guy and G. Hasserjian, "Impedance Properties of 
Large Subsurface Antenna Arrays,  Trans.  of the IEEE, Vol. AP- 
11, No. 3, pp. 232-240, May, 1963. 

25  R.. N. Ghose, "Mutual Couplings Among Subsurface Antenna 
Ar ray  Elements, I t  Trans.  of the IEEE, Vol. AP-11, No. 3,  pp. 257- 
261, May, 1963. 

26B ..K. Bhattacharyya, "Input Resistances of Horizontal Elec- 
tric and Vertical Magnetic Dipoles Over a Homogeneous Ground, t '  

Trans.  of the IEEE, Vol. AP-11, No. 3 ,  pp. 261-266, May, 1963. 

27 C.L. Chen and R.W.P.  King, "The Small Bare  Loop An- 
tenna Immersed  in a Dissipative Medium, I '  Trans.  of the IEEE, 
Vol. AP-11, No. 3, pp. 266-269, May, 1963. 
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bare  loop antenna in a dissipative medium. Fenwick and Weeks2* 

have discussed impedance of buried insulated wires .  

Finally, the work of Galejs should be noted. Galejs has  con- 

sidered the admittances of slot antennas radiating through a plasma 

layer.  He has used the clever technique of considering the infinite 

half-space to be a waveguide of very large,  but finite, dimensions, 

allowing the fields to be represented by a discrete  sum of 

modes. 29 ,SO, 31 

As mentioned above, in this study two type's of aper tures  a r e  

considered, the infinite slot in a ground plane and the rectangular 

aper ture  in a ground plane. 

In Chapter 11, a n  expression for the admittance of a n  arbitrary 

aperture  is derived and shown to be stationary. In Chapter I11 the 

28R.C. Fenwick and W . L .  Weeks, "Submerged Antenna Char- 
ac te r i s t ics , "  Trans.  of the IEEE, Vol. AP-11, No. 3, pp. 296-305, 
May, 1963. 

29J. Galejs, "Admittance of Annular Slot Antennas Radiating 
into a Plasma Layer,  Project No. 125, Applied Research Labo- 
ratory,  Sylvania Electronic Syste'ms, 30 July, 1963. 

30J. Gale js ,  "Admittance of a Waveguide Radiation into 
Stratif ied Plasma, Proj .  No. 125, Appl. Res.  Lab., Sylvania 
Elec. Sys., June, 1963. 

31 J. Galejs, "Slot Antenna Impedance for  Plasma Layers ,  I '  

Appl. Res.  Labs., Sylvania Elec. Sys. ,  23, July, 1963. 
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admittance of an infinite slot is  found for two cases:  radiating into 

a n  

IV 

infinite lossy medium and radiating into a lossy slab. Chapter 

t rea ts  the rectangular aperture, also for  the same two cases.  



- CHAPTER I1 

THE ADMITTANCE OF AN APERTURE 

Consider an aperture  which opens through an  infinitely con- 

ducting ground plane into a half-space region, as shown in F i g .  1. 

Inf in; tely Cond 
Which Ground Plane 
Waveguide 

Aperture 

ucting 

Fig. 1 --Aperture in a ground plane 

The half-space z > 0 consists of an  isotropic dielectric with ar-  

bi t rary permittivity and conductivity ul and with free-space 

permeability. 

guide whose cross-section is fo r  the moment a rb i t r a ry  except that 

it does not v a r y  in the z direction. 

The fields in the aperture  a r e  excited by a wave- 

The waveguide is driven by a 

8 
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source which produces only a single mode incident on the aperture.  

The purpose of this section wi l l  be to derive a stationary formula 

for  the admittance which effectively terminates this mode as a re- 

sult  of the aper ture  radiating into the half-space. 

With a single mode incident on the aperture ,  the electric and 

magnetic fields in  the aperture may be written 

- - 
where en(x, y) and h,(x, y) a r e  the t ransverse  vector mode func- 

tions= appropriate to the particular waveguide cross-section and 

satisfying the relations 

( 3 )  

(4) 

aperture  aper ture  

’’ R. F. Harrington, Time Harmonic Electromagnetic 
Fields,  McGraw-Hill Book, Co., New York, pp. 38lff, 1961. 
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In (1 )  and (2), Vo i s  the amplitude of the incident mode and Vrn is 

the complex amplitude of the n-th reflected mode. Yn is the char-  

acterist ic admittance of the waveguide for  the n-th mode. The 

terminating admittance of the incident mode is given by 

Vo - Vro Y = Y o  
Vo + Vro 

Equation (5) may be put in  a stationary form by the following ma- 

nipulations. F r o m  Eq. (1) and the orthonormal properties of the 

vector mode functions 

(7) 
J J  

aperture 

Hence Eq. (2)  may be written in the form: 

00 

or  

n= 1 aperture  

where T(x, y) is  the quantity 
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en(?, E)dy dE 

Forming the vector product of E (x ,  y, 0 )  and Eq. (9) and inte- 

grating the z-component of the result  over the aperture  yields 

the formula 

aperture 

Hence, combining Eqs. (5), ( 6 ) ,  and ( l l ) ,  the admittance is found 

to be formally given by:33 

aperture  

If the actual aper ture  fields a r e  known, they may be substituted 

into Eq. (1 2) and the admittance may be found. As usual, this is 

not much help, because the fields a r e  not known. The usefulness 

of Eq. (12) stems from the fact that this expression is stationary 

' with respect to  variations of the electric field about its exact value, 

33This expression is essentially the same as that given by 
Lewin, Advanced Theorv of Waveguides, Illife and Sons, Ltd., 
London, pp. 121-125, 1951. 
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- 
as  will be shown below. Hence, an approximation for  E may be 

used to obtain a good estimate for  Y .'4 

To show that Eq. (12 )  i s  stationary, le t  

where Eo i s  the exact aper ture  field and 6E is the variation. Also, 

to simplify the algebra, le t  

aperture 

and 

(1 5) 6D = SlFE -eodx dy 

aperture  

Then the f i r s t  variation in Y is given by 

(1 6) 
A SS- A 

6 Y  = 1 [D: {{6E X To z d x d y t D 6  E o X  t3r- zdxdy  

aperture  aper ture  
D4, 

A 
-2D06D (( Eo X To z dx dy 

J J  

aperture  
where the notation 

34C. L. Dolph, "A Saddle Point Characterization of the 
Schwinger Stationary Points in  Exterior Scattering Problems,  I '  

J. Sco. Indust. Appl, Math., Vol. 5, No.  3,  pp. 89-104, 1957. 
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has also been used. Here To is the value obtained by using the 

exact fields in Eq. (10) and @is the variation. 

To show that bY is zero, the first step is to show that 

ape rtu re  aperture 

in Eq. (16). F r o m  Eq. (lo), it is easily found that 

Now consider the fields in the region z > 0, the half-space. In this 

region both the trial fields, E, fi and the exact fields Eo, Go satisfy 

the Maxwell equations 

and the radiation condition at large distance from the aperture.  

Hence from superposition the variations 6%, 6s also sat isfy 

Maxwell's equations and the ladiation condition at large distance. 

Also, the tangential components of both Eo and 6z a r e  assumed to 

be zero on the z = 0 plane outside the aperture.  Therefore 
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aperture 

where C1 is  the z = 0 plane, C2 is a spherical  surface at infinite 

radius, and n is a unit vector normal to 
A 

o r  C, and directed out 

of the enclosed volume of C1 t Cz. But f rom the divergence 

theorem, 

c1 tc, V 

where "VI1 is the volume of the half-space z > 0. Using Maxwell's 

equations in (25) gives finally: 

written 

351n later sections two types of media will be considered for  
the region z > 0: an  infinite lossy medium and a lossy slab of 
finite thickness. F o r  the case of the slab, two volume integrals 
should be considered, one in the slab and one in  the region out- 
side the slab.  The surface integrals over the slab interface a re  
then equal because of the continuity of the electromagnetic field. 
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1 5  

" aperture  aper ture  

Next, f rom Eqs. (16) and (14), 

(28) Vr, = Do - V, 
and hence Eq. (9) may be written 

Therefore 

A ss A 
(30) l p E  X To z dxdy = Yo(2Vo-Do) 6E X h o ( x y  y) z d x  dy . 

aperture  aper ture  

Multiplying Eq. (30) by 2D4, and using Eq. (3) gives 

ss - - A 2 
( 31) 2D2, S s b E  X f o a  z d x d y =  2DoYo(2Vo-Do) 6E. e,(x,y)dxdy 

aperture  aper ture  
2 

= 2D0 Yo(2Vo-Do)6D . 

Also f rom Eq. (29) 

A A 
( 3 2 )  zdxdy = Yo(2Vo-Do) E o x h o ( x ,  y) z d x  dy 

aperture  aper ture  

= Yo(2Vo-Do)Do . 
(Multiplying (32) by 2D0 6D yields 
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A 2 

(33) 2D06D r(Eo X?, 0 z dx dy = 2D0 Yo(2Vo-Do)6D . 
J J  

aperture 

Equations (31) and (33) ,  when inserted in (27) ,  show that 

(34) 6Y = 0 

which establishes the stationary nature of (12). 

sections, Eq. (12) will be used to compute'the admittance for several  

specific apertures 

In the following 
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- CHAPTER 111 
THE INFINITE SLOT 

In this chapter, the infinite slot antenna ,s treated. In 

Part A, the antenna is assumed to radiate into an infinite lossy 

medium. In P a r t  B it is assumed to radiate through a lossy slab 

of finite thickness into free-space. 

A. The Infinite Lossy Medium 

Consider an infinite slot which opens through a ground sheet 

into a lossy half-space, a s  shown in Fig.  2. The slot extends in- 

finitely far in the y-direction and has width 

Outside the slot, the xy-plane is infinitely conducting. 

i n  the x-direction. 

Fig.  2--Infinite slot in ground plane 

. 17 
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MKS units and the time convention etJot will be used through- 

out this work. 

The entire half-space z > 0 is assumed to be homogeneous and 

isotropic, and is cnaracterized by a complex propagation constant 

r. 

( 3 5 )  

J L 

where 

kl = complex propagation constant 

w = radian frequency 

t i o  = permeability of free-space 

e l  = permittivity of z > 0 region 

crl = conductivity of z > 0 region. 

The slot is excited by a parallel  plate transmission line f rom 

behind the z = 0 plane. 

to have the form of the fundamental mode for  this s t ructure ,  

The electric field in the slot  will be assumed 

Equation ( 1  2) may now be applied to compute the admittance. 

F o r  this geometry, all field quantities a re  independent of y and the 

appropriate form of Eq. (12 )  is 

I 
1. 
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( 3 7 )  Y = -;, 
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it is found that the integral in the numerator of (37) reduces to 

a/2 
a / 2  

A - 
E ( X , ~ , O )  x r(X,y,o) . dx = 1 E(x ,y ,o )  

(39)  s- 
x=-a/2 -a/2 

A 
x H(x, y, 0) ' *  2 dx . 

Hence to evaluate Y the problem is to find the magnetic field 

- - 
H(x, y, 0) resulting from E(x, y, 0). 

It is easily seen that the electromagnetic fields in this prob- 

lem a r e  everywhere TE to the y-axis. Hence the fields may be 

derived from a vector potential of the form 

where + satisfies 
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with appropriate boundary conditions. The electr ic  and magnetic 

fields a r e  related to F through 

I 
I 

( 4 3  

- - 
Since the fields have no y-dependence, the E, and H com- Y 

ponents a re  given by 

(44) E , = + -  a+  
a Z  

1 
I 
I 
1 
I 

This geometry may be regarded as a transmission line in the 

z-direction with infinite cross-section in  the x-direction. 

the solution for  9 may be constructed as the sum of a continuous 

Hence 

spectrum of eigenvalues, 

where 

(47) 
2 

and the root is  chosen so that 
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(49) Im(k,)LO * 

corresponding to propagation in the t z  direction. 

E, is then given by 

o r  in the z = 0 plane 

The function f(k,) is then found by @king the inverse transform: 

Using ( 3 6 ) ,  this gives 

or 

Thus the solution for 4 is 



(55) 
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- jkzz -jQx m 

dkx 1 s in  (?)e e +(x, Y, z) = - 

and finally Ex and Hy a r e  given by ( 4 4 )  and (45) a s  

F o r  z = 0 these give 

With no y-component of the electric field, Eq. (39) becomes 

Since EJx,  y ,  0) is zero for  1x1 > a/2, the limits of integration 

in  (60) can be extended to infinity. Then substituting (58)  and (59) in  

1 
1 
B 
1 
1 
1 
1 
1 
1 
I 
I 
I 
1 
1 
I 
I 
1 
I 
1 
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(60) and making use of Parseval 's  T h e ~ r e m ' ~  gives 

A 
E(x,*y,o) X H ( x , y , o )  z d x  

x=-a/2 

Now the integrand may be rearranged and Parseval ' s  Theorem 

may be used again. Let 

(62) 

f2(kx) = - 1 sin' (F) 
ak: , 

The transform of f l  (k,) is given by: 

36For  the t ransform pairs 

Parseval ' s  Theorem is: 

nw 1 
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I 
I 

The transform of f,(kx) is 

Then ParseVal's Theorem gives 

37 The integral in (69  is derived in: 

R. T. Compton, J r . ,  "The Aperture Admittance of a Rectangular 
Waveguide Radiating into a Lossy Half-space, 
Antenna Laboratory (in preparation). 

Report 1691-1, 
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Since the integrand is a n  even function of x, this may be 

written 

The denominator in Eq. (37) is simply unity. Hence the 

admittance is given by: 

It is convenient at this point to normalize (72) with respect to 

the free-space constants. Let 

(73)  ko = A== 
be the free-space propagation constant, where is the permittivity 

of free-space and A, is the free-space wavelength for  the frequency 

w. Also let 

( 74) Yo = JZ 
be the characterist ic admittance of free-space and define 



Then ( 7 2 )  m a y  be written in the form 

where 

is understood to mean 

For small p ,  

2 
IT 2 N1 ( p )  = - z Jo(p) t - Bz Ji ( p )  

= P  
(80) 

1 
2 Jz(p) - - J4($) -t 

where Y = 1.781, and thus 
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Therefore (77) becomes: 

Finally, with the substitution 

( 82) becomes 

A s  a check on the algebra, it may be seen that Y has the correct  

dimensions. A, C, and the integral a r e  dimensionless. Hen= Y 

has the dimensions of Yo, i . e . ,  m h o s .  
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0 et" 

Then Y, normalized to 5 ,  is given by 
A 

The function IH, (x, a ) ,  and also the integrals 

X 

IN(x, a )  = ( No(c e-Ja)d$ 
J O  

J O  

have been tabulated by the author fo r  O l x l l O .  0 ,  -90"L+59O0, and 
will be published in a forthcoming Antenna Laboratory report .  

(2) 
The values of H1 (2) for  complex z were  obtained f rom the 

following two tables : 

(a) "Table of the Bessel  Functions Jo(z)  and J1 (2) for  
Complex Arguments, I '  Mathematical Tables Project ,  National 
Bureau of Standards, Columbia University P r e s s ,  New York, 1943. 

(b) "Table of the Bessel  Functions Yo(z)  and Y1 (z) fo r  
Complex Arguments, National Bureau of Standards, Columbia 
University P r e s s ,  New York, 1950. 

I 
1 
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Equation (86)  has been evaluated for  0 L CA 5 10 and 0" I 8  5 90", 

and is shown in Fig.  3 .  It is convenient to plot the normalized quantity 

- Y ,  since then only one curve need be drawn for  all aper tures .  A 

YO 
F o r  a fixed aperture size and fixed frequency, Fig.  3 shows 

the behavior of the admittance Y as a function of C,  and hence as a 

function of €1 and u1 . 

Fig. 3--The normalized admittance - A Y for  a n  infinite medium 
YO 
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If one i s  interested in the admittance of the slot a s  a function 

of the slot dimension A(=koa), the shape of the curves in Fig. 3 is 

misleading because A is included in the normalizing constant fo r  

Y.  

Y determine the quantity - a s  a function of A (and 9) for fixed C. 

As a 'check on the numerical results shown in Fig. 3 ,  it is 

This difficulty may be remedied by using the data of Fig. 3 to 

YO 

helpful to consider two limiting cases.  F i r s t ,  suppose the semi- 

infinite region has €1 = q = 0 so  that C = 0. (The point given by 

CA = 0 in Fig.  2 also corresponds to the d.c. case,  i . e . ,  w =  0, 

but the interpretation near w = 0 is  somewhat tricky. 

is discussed below.) Then it is clear  from Eq. (59) that H (x, y, o)=O 

This case 

Y 

and therefore Y = 0. This accounts for  the fact that the curves in 

Fig. 3 approach the origin as C -, 0. 

Second, consider the case where C i s  large (and @ # 0). 
? 

decays rapidly to zero for  complex 
(2) kl 
(54 Since the function Ho 

- k1 as 7 becomes large, the integral in (84) may be replaced by 
k0 

(87) 

with little change in value. F r o m  the Fourier  Transform pair:39 

39See Reference 37. 
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where 

it is seen that 

a .  (91) 

Hence the integral in (87) m a y  be approximated by 

Also for large C ,  \ 

Making use of these gives the following approximate form for (84): 

(94) 

or 
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(95) 
- j+  . 2 - A ~ 2 ~ ~ e  t j -  

Y O  I T *  

This behavior is clearly indicated in  Fig.  3. Comparison of 

Eq. (95) with the curves in  Fig. 3 shows that (95) is quite accurate 

f o r  + > 15"  and CA > 7. 

As mentioned above, the behavior of Y as a function of f r e -  

quency is somewhat tr icky as w -, 0 F r o m  (86) 

2 yo t j -  - 
I T A .  

For low frequencies, if crl f . 0 ,  C and CA are given by: 

(97) 

( 9 9 )  

CA = 1 1 koa =JG~ a 

Hence CA -, 0 as o -+ 0. F o r  small values of p , 

Therefore putting p = ceJa and substituting (99) in (85) gives for  

small x 
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I 
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(V = 1.781). Similarly, 'for small p , 

Using (100) and (101) in (96) gives 

Substituting (97) and (98) and collecting terms gives for the leading 

term in 

Since 

for small a, 

and therefore 
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Because 

it is seen that Y - t m  a s  o '0, for any u1 # 0. 

If ul = 0, however, instead of (97)  and (98) we use 

in (102). This gives 

which i s  a n  interesting result  because 
f 

This peculiar behavior may be understood by examining care-  

fully the logarithmic t e r m  in (102). F o r  any non-zero conductivity, 

this t e r m  contributes a singularity at w = 0. The lower the con- 

ductivity, the lower the frequency must be before this t e r m  con- 

tributes appreciably to Y .  In the limit, the singularity at w = 0 

disappears,  

I 
I 
I 
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Finally, i t  is interesting to make the following observation. 

Suppose the parallel-plate transmission line shown in F ig .  2, in- 

stead of feeding a semi-infinite half-space, feeds an infinite sec-  

tion of transmission line with the same dimensions and with a lossy 

dielectric between the plates, as shown in F ig .  4. The character-  

is t ics  admittance of the line f o r  z > 0 is 

Fig .  4--Infinite transmission line model 

The terminating admittance, Y', for  the section of line z < 0 is 

simply Yc. Hence, after some algebra 
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2 Thus, except for  a constant j - , which i s  the f i r s t  t e rm of (95) .  

the admittance of the slot i s  correctly given by the model in F i g .  4, 

for large CA. 

IT 

B. The Lossy Slab 

Next the case where the infinite slot radiates into a lossy slab 

of finite thickness will be considered. The geometry i s  shown in 

Fig. 5. As before, the s lot  has width 'latt and the electric field in 

the slot i s  given by Eq. (36). The slab has thickness "d" and prop- 

agation constant kl . In the region z > d, the medium is free-space,  

with propagation constant ko. 

z = o  z = d  

F i g .  5--Slot radiating through finite slab 
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As in Part A, the fields a r e  TE to the y-axis and may be 

derived from a vector potential of the form given by Eq. (40). 

The electromagnetic fields are then given by Eqs. (42) and (43), 

with the appropriate value of k used for  each region of space. 

In the slab, which will be called Medium 1, 4 will  consist 

of both an "incident" and a "reflected" component: 

In the free-space region, Medium 0, 4 has only a transmitted 

component, 

In (1 14) and 11 5) kzl and k,, a r e  the z-direction propagation con- 

stants given by 

- ( 1 16) kzl - 

which a r e  chosen so that 
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I For z = 0, (120) gives the relation 

(119) Im(kz l ) ,  Im(kzo) I 0 

Applying Eqs. (42)  and ('43) gives for the fields: 

Taking the inverse t ransform of (124) and making use  of (53)  gives 

(125)  jkzl[ -I(kx) t ~ ( k , )  1 = - 2 sin(?) 

I 
$. kX 

Also, applying boundary conditions at z = d: I 

" I  

"1 

I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
1 
1 
1 
I 
1 
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1 

I 
I, 

I 
1 

I 
I 
I 
I 
I 
I 
I 
I 
I 

Solving (129, (128), and (129) simultaneously yields for I(kx) and 

R (kx) 

sin( y) 

Equations (1 30) and ( 1  31) along with ( 1  20) and (1 21) determine the 

fields in Region 1. 

Now applying Eqs. (37), (39) ,  and (60) and making use of 

Parseval 's  theorem yields f o r  the admittance 
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The integral in (1 32) i s  difficult to evaluate analytically. 

To obtain quantitative results f rom (1 32) ,  it was necessary to 

resor t  to numerical integration techniques. 

Before discussing these results,  however, it i s  interesting 

to make the following observation. 

Let 

Then 

P 

and 

where 
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Equation (1 36) may be expanded 

which is valid if  

Then, substituting for  8 and D(k,) in (138) yields the expansion 

k&Zl -k1 kzo 

ktkz 1 +k: kzo 

- j 2nkz d 2 0 0 .  

= 1 t 2 I,( 1 tjC(k,)tan kzld 

C(kx) t j  tan kzld 
(140) 

n = l  

This result  is interesting because the t e rms  of the ser ies  in  (140) 

a r e  easily interpreted. Fo r  a thick, lossy slab, e is small  

and the te rms  of the ser ies  a re  negligible in  comparison with the 

leading t e r m  of 1. If the substitution 

- j 2nk,ld 

I 
I 
I 
I 
I 

1 + j C(Q) tan kzld % 

C(k,) t j t an  kzld 
(141) = 1  

is made in (132) the resulting admittance is the same as in part  A 

above, i. e., the admittance of a slot in an infinite lossy region. 

The exponential e 
-j2nkzld represents the phase shift and attenuation 
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undergone by a wave propagating from the aperture  out to z = d and 

back to the aperture. Also, ( kikzl - k:k,,) may be shown to be 

the reflection coefficient associated with a reflection at z = d. 
k o h l  +k&,o 

Hence, the n-th t e r m  in the se r i e s  (140) represents the effect on 

the admittance of the wave arriving at the aperture  af ter  n re-  

flections between z = 0 and z = d?' 

Although the expansion in (140) does not help to evaluate 

(132), it serves as a check on the derivation of (132) and allows 

a direct  physical meaning to be attached to the integrand. 

Now w e  return to the evaluation of (112) .  First, the in- 

I 
I 
I 
1 
I 
1 
I 
I 

tegral  may be written in t e rms  of normalized parameters. Let 

(144) A = koa 

and 

(145) D = kod. 

van de r  Pol and H. Bremmer ,  Phil. Mag. (7)24(1937)825. 
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Then ( 1  32) becomes 

Equation (146) has been evaluated numerically on the Ohio 

State University IBM 7094 digital computer for various values of 

p ,  A, and D. Since the integrand in (146)  is a n  even function of 

- y =“.*LA z -..- 2 :-& -1-1 A:.-.- - - -A -  4.1- -I--^ 
1 a y  uc A v u u u  u y  u i b c g A a u u g  u v c : I  ule A a i i g c  0 sq 5 w 2nd 

multiplying the result  by 2. The integral over the finite range 

0 I q 5 TO is actually used to approximate the integral over 

0 

‘ I J  

qs m, where qo is chosen large enough t o  include the region 

where the integrand is significantly different f rom zero.  yo is 

chosen as follows. F o r  large q, 

(147) tan]- D 2 tan(-jyD) 2 -j 

and hence , 

Let 



(149) 
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T l 1  = 1o lp j  = lOC, 

72 = 3/D, 

and 

Then for  (q  1 > (qo 1, Eqs. (147) and (148) hold to a good approxi- 

A mation. 

writ ten,  

Now f rom (146), the normalized admittance - Y may be 
YO 

The following relations then hold 

"Of course, to say a 1. b '2 c does not actually "prove" any- 
thing about the relation between a and c. However, the argument 
can easily be made rigorous. 
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and therefore the condition 

> 10 c (154) 'lo - 

, 2  < 0.01 . 
L 1ooll 

Hence to within this e r r o r  

A -Y 
YO 

d'l 

F r o m  the results obtained above in P a r t  A, an  e r r o r  less  than 

0.01 seems acceptable. 

The integral in (156) was evaluated by means of Simpson's 

Several diffierent increment sizes were chosen throughout rule. 

the range 0 <, T\ 5 'lo. For  some values of q, the integrand in (156) 

fluctuates rapidly, while for other values of '1 it is slowly varying. 

To reduce the computer running time, it was desirable to make 

the increments large in the regions where the integrand is slowly 

varying. 
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The results of this calculation a r e  shown in Fig.  6 through 

A Fig. 23. 

in t e rms  of normalized conductance and susceptance, 

These figures show the normalized admittance - Y 
YO 

A A A - Y = - G t j - B  
yo YO yo 

fo r  nine combinations of A and D. Although there  is perhaps no 

need to  include "A" in  the normalization of Y (since it has a given 

value for  each curve),  it has been included so these curves may be 

compared directly with Fig.  2, for  the infinite lossy medium. 

Figures 6 through 11 show the admittance fo r  A = 1. Figures 

6 and 7 andfor  D = 1, Figs. 8 and 9 for  D = 0.5, and Figs. 10 and 11 

fo r  D = 0.25. Figures 12 through 17  a r e  for  A = 0.5 with D = 1 ,  0.5, 

and 0.25. Figures 18 through 23 show the resul ts  for  A = 0,25 and 

again with D = 1, 0.5, and 0.25. 

F o r  the case where the slab has large loss  (k has a large 

imaginary part), the admittance is seen to be the same as i n  Part A 

above. This resul t  is expected, of course,  because for  large loss 

the effect of reflections at z = d should be negligible at the aperture.  

On the other hand, for  a low loss  medium, the admittance is found 

to oscillate rapidly as a function of kl /ko. In fact, for  + = O", the 

1 
1 
I 
1 
I 
1 
1 
1 
I 
I 

admittance cannot be shown meaningful on the same graph as fo r  

9 2 15", because it oscillates too violently. F o r  this reason for  



R 
I 

47 

9 = 0" the admittance has been plotted on a separate  curve for each 

combination of A and D. 

It is interesting to note that the curves of admittance a r e  in  

some cases  double-valued. That i s ,  the same admittance can result 

f r o m  two o r  more  values of k. 

in some of the curves (for example, F ig .  8). 

This is evidenced by the folding over 
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- CHAPTER I V  
THE RECTANGULAR APERTURE 
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In this section the admittance of a rectangular aper ture  

radiating into a lossy medium wil l  be found. As in Chapter I, 

Part A t rea ts  the case of an infinite lossy medium and Part B the 

case of a lossy slab. 

A. The Infinite Lossy Medium 

Consider a rectangular waveguide which radiates through a n  

opening in  an  infinite ground screen,  as shown in Fig. 20.  The 

half-space z > 0 is assumed to be homogeneous and isotropic, with 

a complex propagation constant kl as given in Eq. (35). 

The waveguide aperture has dimensions (a, b), as shown in 

Fig. 24. The electric field in the aperture  is assumed to have the 

form of the TElo waveguide mode, with the electric field in the x- 

direction 

- cos : (x, y) E Aperture 
b 

: (x, y) k Aperture. 

- 
E&, y, 0 )  = eo(x9 Y) = 

57 



58 

Fig. 24--Rectangular aperture in  a ground plane 

The normalizing constant is included so  that the nor- 

malization relations 

a r e  satisfied, as discussed in Chapter 1. 

W i t h  the aperture  field as given in  (158), the field is every- 

where TE to  the y-axis?2 Hence the field may be represented by 

a n  electr ic  vector potential 

- A 
( 160) F = Y J C  
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42For a proof of this, see  Reference 37. 
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where t) satisfies the wave equation 

(161) 9t) +k:$ =‘O 

with the appropriate boundary conditions. 

netic fields are given by 

The electric and mag- 

- 
( 162) E = - V X F  

In particular, 

A solution for t) is given by: 

with 

2 2 
k , = ] k :  - & - k y  

where the square root is chosen so that 
2 1  
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corresponding to propagation in the tz-direction. Then f rom (164), 

The inverse t ransform,  evaluated at z = 0, gives 

tjk,x t j k  y 
-jk,f(k,,k ) = e Y d x d y .  Y (171) 

Substituting for  E,(x, y, 0) f rom (158) results in 

a/2 b/2 
(172) -jkzf(&, ky) 1x1 J cos 2Y b 

ab ,=-a/ y=-b/2 

Hence, 

2rb cos[?) 

I? - k2 b2 
Y 

I 
1 
I 
I 
I 
1 
I 
I 
I 
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~ 
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and 4 in (166) is then 

Then f rom (164) and ( 1 6 3 ,  E, and H a r e  found to be: Y 

-jkzz -jkxx -jkyy 
* e  e e &Y 

The aperture admittance may now be calculated from Eq. (12), 

which for this case is 

(177) Y = 

I' E(x, Y, 0 )  *Tojx, y) d x  dy 
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- - 
As with the infinite slot, since eo(x, y) is used f o r  E(x,  y, o) ,  it follows 

f rom the orthogonality of the vector mode functions that 

A fb'2 
- E(x, y , ~ )  X H(x ,y ,  0) - z d x  dy . a / 2  =r  

Jx=-a /2J  y=-b/2 

Also the integral in the denominator of (177) is unity. 

stituting (175) and (176) in (178) and making use of Parseval ' s  theorem43 

(the limits of integration may be extended to infinity because 

Hence, sub- 

43For the Fourier  transform pair  

J,,J,, 

Parseval ' s  theorem is: 

and one form of the convolution theorem is 
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- 
E(x, y,  0) i s  zero outside the aperture) yields for the admittance: 

Next, the te rms  of the integrand may be recombined as follows. Let 

Then using the form of the convolution theorem given in the foot- 

note on p. 62, 

where f l  (x, y), f, (x, y) a r e  the transforms of F1 (&, k ),  F 2 ( k Y  k Y ) Y 

and a r e  found below. 



and 

Consider f l  (x, y) first: 

These integrals a r e  easily done, and the result  is:  

where 
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Doing the integration on kx gives4 

The integration on ky then yields 

“This integral is derived in Reference 37. 

65 
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The integral in  (193)  is known as Weyrich's integral.45 

(182) gives 

Thus, 

and since g(x) = g(-x) and h(y) = h(-y), Y may be written: 

Finally, substituting for  g(x), h(y), 

'Dl(b-y) cos 9 t D, s in  91 8bj (197) Y = - 
au Po b b 

r 

-jkl l x2  t y2 
e d x d y  . 

Before evaluating ( l 9 7 ) ,  it is convenient to  normalize with respect 

to the free-space constants. 

propagation constant, 

As before, let ko be the free-space 

45 W .  Magnus and F. Oberhettinger, "Formulas and Theorems 
f o r  the Functions of Mathematical Physics, ' I  Chelsea Publ. Co., 
New York, 19%; p. 34. 
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(Ao i s  the free-space wavelength), and let yo be the free-space 

characteristic admittance , 

(199) yo =J 2 
PO 

Then (197) may be written 

A = koa 

B = kob 

and Yn is the normalized aperture admittan~e. '~ 

4 6 N ~ t e  that the normalization is not the same as  for the 
infinite slot. 
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B .  Numerical Results and 
Interpretation 

Equation (200) has-been evaluated in the University's Nu- 

mer ica l  Computation Laboratory with the IBM 1620 Digital  Com- 

puter f o r  three s izes  of aper tures :  

(b) A = -  3lT B 
4' 

( c )  A = m ,  B = ZIT(% by Xo) . 

The computation was done by means of SAinpson's rule,  af ter  making 

the change of variables 

With this substitution, (200) becomes 

A 

(207) Yn= 8 C1(B-RsinB)cosX(R B s ine )  

-jk R 
+Czs in  (R sin e) e ko dRde 

B I 
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B - lr - 

IT C1 (B-R sin e )  COS, (R sin 8 )  
2 sin 8 

(207) +8 z j  1 j' 
cont. e=eo R = O  

where 

B (208) tan 8, = - 
A .  

This change of variables removes the singularity at q = = 0 

in the integrand of ( 2 0 0 ) ,  which is troublesome for  computer evalua- 

tion. 

The double integral is evaluated as an  i terated integral, the 

integration of R being done first .  Simpson's Rule is used throughout. 

First, with 8 held constant at each of the values 0, 0. I(:), 0.2(;), 

. , (:), the R-integral is computed by breaking the range of R 

into ten subintervals, evaluating the integrand at the end-points of 

the subintervals, and summing according to Simpson's Rule. These 

values, which form the integrand for the 8-integral, are then summed 

again by Simpson's Rule to evaluate the e-integral. 

The results of this calculation a r e  shown in Figs. 25 through 

29 .  The admittance Yn is plotted in t e rms  of normalized conductance 

Gn and normalized susceptance Bn: 

Y n  = Gn -k j B, . 
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F i g .  25--The normalized admittance __ Y for  an infinite medium 
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W i t h  C and 9 defined by 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

the resul ts  a r e  given for various values of C and 9. 

IT Figures 25 and 26 show Yn f o r  the case A = - B = a. 
2 ’  

Figure 25 gives the results for 0 5 C I 1 and 0 9 5 90” ,  and 

Fig.  26 fo r  0 5 C 1. 5 and 0 5 + 5 90”. Figures 27 and 28 show Yn 

for the case A = 3*-, B = E .  In Fig.  27, the limits are 0 5 C 5 1 
4 2 

and 0 1. + 1.90” and in  Fig.  28, 0 5 C < - 3. 

A = r ,  B = 2a a n d O L C 5 2 ,  O F + L 9 0 ” .  . 

Figure 29 shows Yn fo r  

Finally, as a check on the numerical resul ts ,  the integral  fo r  

Yn may be evaluated approximately for  the case where kl has a large 

(complex) value. In (200), 

The change of variables in Eqs. (205), (206) gives the substitution 
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If - k1 has a large (negative) imaginary par t ,  the only contribution to 

the integral in (21 1) will occur in  the vicinity of R = 0. In this region 

the other terms in  the integrand may be approximated by 

k0 

C1 (B-6) cos 5 ‘2 C1 B 

C, sin Si ’4 o . 
B 

Also the range of integration on R may be extended to infinity with 

little change in  the value of the integral. With these simplifications 

( 2  1 1) becomes 

, C1 becomes F r o m  (203), f o r  large - kl 
k0 

2 
- 1  

(218) C1 4rB2 - (”) ko 

so (217) yields 
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kl 
k0 

a surprisingly simple result This behavior for large - is clearly 

indicated in F igs .  25 through 29. 

For  small  kl it is  difficult to find a simple approximation for 
k0 

kl 
k0 

. Y, f rom Eq. (200). However, for the case where - is purely 

imaginary, it is easy to see  that Eq. (200) gives a purely imaginary 

admittance, because C1 and C2 a r e  rea l  and the integrand has  a 

real value. 

The reason for this can be appreciated by examining Eq. (176) 

for the magnetic field. In the aperture ,  (176) gives: 

-jkxx -jk y 
- e  e Y % d k y .  

This may be written 

-jk& -jk y 
. e  e Y 

where 
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Then by making use of the convolution theorem 

where 

and the transform pairs given by Eq. (175) and Eq. (190) through 

( l 9 4 ) ,  Hy may be written 
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Now for the case where Re(k1) = 0 ,  the integrand in (227) is 

This means 2 real ,  kl is real ,  and hence Hy is purely imaginary. 

that the electric and magneticfields in the aperture a r e  in time 

quadrature. The integral in the numerator of Eq. (177) is there- 

fore  imaginary. 

I 
I 
I 
I 

This situation is similar to the case of large waveguide 

terminated by a small  cutoff waveguide, as illustrated in F ig .  30. 

Large Waveguide 
S ma I I Wa veg uid e 
Below C ut-Of f Incident 

TE,, Mode 

Fig 30 --Waveguide analogy 



78  

In the small  waveguide the electric and magnetic fields a r e  

in phase quadrature and the effective termination of the large guide 

is a pure susceptance. 

It is  interesting to note that fo r  kl = 0 ,  the magnetic field is 

quasi-static. F o r  a fixed aperture  s ize  and fixed frequency, the 

condition kl = 0 corresponds to €1 = 0, u1 = 0 in  Eq. ( 3 5 ) ,  which 

leads to a Laplace's equation for the magnetic field. (The case 

kl = 0 can also be interpreted as the zero-frequency limit; but 

since the curves in F i g .  25 through Fig. 29 a r e  plotted for  con- 

stant A = koa and B = kob, the physical aper ture  s ize  must be 

considered as varying inversely with frequency in this case.)  

c.  The Lossy  Slab 

Next the aperture will be assumed to radiate through a 

lossy slab of thickness d into free-space. 

tu re  is the same as in Part A, as given in  Eq. (158). 

The field in the aper -  

Unlike the previous cases treated,  

fields for  this problem a r e  not TE to the 

construct a solution with F as defined i n  
- 

the electromagnetic 

y-axis. An attempt to 

Eq. (125) will not work, 

because the solution will not satisfy all boundary conditions. Hence 

the vector potential must have two components. One possible 

- 
choice for F is 
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- A A 
F = 9 x  t +y ( 2 2 8 )  

where 9 and 4 a r e  both solutions to the wave equation. 

As in Part I-B above, the slab will be called Region 1 and 

the free-space Region 0. 

be constructed in the form 

In region 1, solution for 4 and + may 

and in Region 0, 
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where the propagation constants 

(234) kZl =Jmy 
2 2 2  

(235) k,, = J  ko-<-ky 

a r e  chosen so that 

The fields a r e  found from the relations 

- - 1 2 -  
H = - [k l , o  F t V (V F)] (239) 

JoPo 

which give in Region 1 ,  

I 
I 
I 
I 
4 
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- jkxx * e  

-jkxx -jkyy 
e * &Y - e  

and in region 0,  
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-jkzoz -jkxx -jk 
. e  yy dk, dky . 

Taking the inverse t ransform of (240) and (241) at z = 0 gives 

(248) jkzl [-I+ t R + ]  = 4~rE 
kx(rr2 - k t b 2 )  



1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

83 

(253) (k: -ki) [$e 'Jkzld] -kxky[I+e - j k Z d  + R + e + J k ~ l d ~  

The solution of Eqs. (248) through (253) is tedinus h12t straight- 

forward. In determinant form, I+ and I+ a r e  found to be given by 

where 

(256) 

(257) 

B1 A1 2 

All A12 

I+ = 1% A22 

\Al2 A22 
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2 2  2 2  
(258) All = (kl -kx)kz0 cos k,ld t j(ko-kx)kzl s inkZld 

(2%) A12 = -kxky(kzo cos k,ld t jkzl s in  kzld) 

2 2  2 2  
(260) = (kl -ky) k,, cos kzld t j(ko-k )kZ1 sin kzld Y 

and where f is  the quantity 

kx(.rr2 - kyb  2 2  ) 

Also f rom (248) and (249) ,  R+ and R+ a r e  given by 

(263) R+ = I +  . 
Equation (177) of par t  A wil l  be used to find the admittance. 

Using Parseval ' s  theorem and Eqs. (240) and (243) for  the fields 

gives 

-kxky(I++R+)I 

' With (262) and (263) this may be written 
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Again Y will be determined in terms of the normalized constants 

- kx (266) - -  
k0 

(267) e = 5 
k0 

-j+ ki (268) p = C e  = -  
k0 

(269) A =koa 

(270) B = kob 

(271) D = k , d .  

Define also 

(272) R =]m2 

(273) P = 1 - q 2  - e' 1 
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Then I and I+ m a y  be written 4J 

1 
(276) 19 = 

with I' and I' given by 4 + 

(277) 
IC11 Cl2 

Cl2 l D 1  
t ID2 c 2 2  

(278) I+ = 

IC12 c 2 2  

where 
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I 
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(281) C1l = (p2-q2)  P COS RD t j ( l -T2)R sin R D  

(282) C12 = -qf(P cos R D  t jR sin RD) 

(283)  Ct2 = (pz-f2 ) P cos RD + j(l-C2 )R sin R D  . 

The admittance Y, normalized to the free-space characteristic 

admittance yo i s  then found to be 

Equation (284) has been evaluated on the OSU IBM 7094.  The , 

integration is  actually done after a change of variables 

(285) q = B COS cx 

(286) f = p sin a 

so  that 
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'I z 
-28 sin a cos a 19 pdpda. 

After this change, only one infinite integral  must be evalu- 

ated, inste.ad of two. Simpson's rule is used. The integral is 

done as a n  i terated integral, the integration on a being done 

first. The integration on B is done over a finite range, where 

the upper limit is chosen so the range of integration includes all 

values of p fo r  which the integrand has a significant value. The 

method of choosing the limit is to t e s t  the integrand at successive 

increments of p,  and if its value is small enough to contribute 

less  than 0.0001 times the value of the integral  for  five increments 

in  a row, the integration is terminated. 

Tr Numerical resul ts  were obtained for  the case A = - B = IT, 
2 '  

and D = IT a n d a r e  shown in Figs.  31, 32, and 33. As expected, for  

kl with a large imaginary par t ,  the admittance is the same as for  

an  infinite lossy medium. F o r  kl a rea l  number, corresponding 

to a lossless dielectric, the admittance fluctuates rapidly as a 

function of kl . Except near kl = 0,  the admittance is seen to be 

quite similar to the admittance per  unit length of the infinite 

, slot. 
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Fig. 31--The normalized admittance Y for a finite slab 
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Fig. 32--The normalized admittance - Y for  a finite slab 
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Fig. 33--The normalized admittance - Y for a finite slab 
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CHAPTER V 
CONCLUSIONS 

The admittance has been found for  an  infinite s lot  and a 

rectangular aper ture ,  as a function of the complex propagation 

constant of the lossy medium. 

The admittance of an  infinite slot  radiating into a lossy 

half-space is shown in F i g .  3 .  

showing the admittance as a function of 

Figure 3 is best  interpreted as 

and ul, for  fixed aper-  

tu re  size and fixed frequency. 

s ize  o r  on frequency can be calculated f rom Fig. 3 .  

that the behavior of Y near o = 0 is markedly different for  ul = 0 

than for  ul # 0. 

The dependence of Y on aperture  

It is noted 

The admittance of an infinite slot radiating through a lossy 

s lab into free-space has been found and the results a r e  given in 

F igs .  6 through 2 3 .  

sufficiently lossy,  the admittance i s  identical with that for  an  in- 

finite lossy medium. F o r  a low-loss slab,  the admittance 

fluctuates rapidly as a function of the propagation constant kl 

F o r  lossless kl, the admittance undergoes resonances which a r e  

A s  would be expected, when the s lab becomes 

9 2  



I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

9 3  

more pronounced for the higher values of kl . 
be expected because, viewing the slab as a section of transmission 

This behavior i s  to 

line between the aperture and the free-space region, it i s  seen 

that the higher the value of kl the worse is the impedance mis- 

match at the interface. 

The admittance of a rectangular aper ture  antenna has been 

found in Chapter IV. 

shown in Figs. 25 through 29, for  three sizes of aperture.  The 

The results for an  infinite lossy medium a r e  

admittance for the rectangular aperture is seen to be similar to 

that of the infinite slot. One difference, however, is seen near 

C = 0, where the admittance of the infinite slot goes to zero but 

that of the rectangular aperture has a finite negative susceptance. 

The admittance of a rectangular aperture radiating through 

a lossy slab has been found. Numerical results a r e  plotted in 

F i g s .  31, 32, and 33, fo r  the case A =E 

the admittance is identical wi th  that of an infinite lossy medium 

B = TT, D = TT. Again 
2 ’  

when kl has a large complex value. As with the infinite slot 

antenna, the admittance for real  kl undergoes resonances which 

grow in amplitude a s  kl becomes larger .  

It is noted that in a l l  cases the aperture admittance is in- 

ductive when the medium is highly lossy. This is to be expected 

since for  a lossy medium the fields do not penetrate the medium 
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to any apprecialbe depth. The aperture  fields a r e  then essentially 

the same as they would he i f  the half-space were  replaced with a 

continuation of the waveguide, filled with the lossy medium. The 

terminating admittance would then be simply the characterist ic 

admittance of the filled guide, which is inductive. 

F o r  values of k1 corresponding to a medium with large 

loss ,  the admittance of the infinite slot was found to be given by 

and the admittance of the rectangular aper ture  by 

The admittance of the slot o r  the rectangular aper ture  

radiating through a slab was found to be double-valued, as a func- 

tion of C, when the slab is lossless.  This behavior is to be ex- 

pected, since the slab ac ts  as a transmission line joining the 

aperture  to the free-space region. As C changes, the electrical 

length of the line changes, and the input admittance at the aperture  

var ies  according. As would be t rue of an  ordinary transmission 

line, the admittance is double valued, (it loops on a Smith Chart). 
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21 March 1967 

ERRATA FOR REPORT 1691-5, R. T. Compton, Jr . ,  "The Admittance 
of Aperture Antennas Radiating Into Lossy Media, ' I  15 March 1964, 
Antenna Laboratory, The Ohio State University Research Foundation; 
prepared under Grant Number NsC-448 for National Aeronautics and 
Space Administration. 

The numerical resul ts  as given in  Report 1691-5 for  the aperture 
admittances of the infinite slot and the rectangular aperture a r e  incorrect 
for the cases  of lossless  o r  low loss s labs  covering the apertures.  
Specific e r r o r s  in  Report 169 1-5 include: 

1) 
slot covered by a lossless  slab (+ = 0)  a r e  incorrect  - 
Figures 7,9,  11, 13, 15, 17, 19, 21, 23. 

The resul ts  given in  the following figures for the infinite 

2) The infinite slot resul ts  for the 4 = 15" s lab a s  plotted in  
the following figures may be incorrect. Also the accuracy is 
i n  doubt for some of the curves for  c$ = 30°, 45" in the following 
figures. Figures 8; 10; 12; 14, 16, 18, 20, 22. 

3) 
in Fig. 31 may be inaccurate. 

The rectangular aperture resul ts  fo r  the 15" slabs as plotted 

4) 
aperture covered by a lossless s lab (+ = 0 )  a r e  incorrect. 

The resul ts  given in Figs. 3 2  and 33 for  the rectangular 

5) The observations and conclusions by the author on pages 46, 
47, 88, 92, 93 and 94 of Report 1691-5 regarding the oscillatory 
and double valued behavior of the resul ts  for low loss  slabs should 
be dis regarded. 

The basic analysis for  the infinite slot and the rectangular aperture 
a r e  cor rec t  as given in  1691-5. The details of the derivation for the 
rectangular aperture have been checked and all equations including the 
final equation (287) a r e  correct. The source of e r r o r  i n  obtaining 
numerical resul ts  f r o m  the analyses i s  the neglect of surface wave 
which. occur in  the integrand of the final equations. 

Correct  numerical resul ts  have been obtained for  loss less  s labs  
by developing a computer program which locates the surface wave poles, 
numerically integrates between the poles, and evaluates the contribution 
of the surface wave pole residues to the aperture admittance. 
surface wave pole analysis, the highlights of the associated computer 
program and the corrected theoretical resul ts  for  the aperture 
admittance of the rectangular waveguide a r e  given in  Report 1691 -21. 

The 


